Recommandations pour la prévention de la légionellose nosocomiale

CCLIN Sud-Ouest
Liste des participants au groupe de travail

Monsieur le Docteur D. PIERREJEAN CH Auch - Animateur du groupe de travail

Monsieur le Docteur G. CHAUVIN C.H. MONT DE MARSAN
Madame G. DEJEAN D.D.A.S.S. Gironde
Monsieur G. FAYE D.R.A.S.S Aquitaine
Madame E. GALY C.H.U. Toulouse - CCLIN SO
Madame A. LAFFORT C.H.U. Bordeaux - CCLIN SO
Monsieur J. LAMBEA C.H.U. Toulouse
Madame C. LEGER C.H.U. Poitiers - CCLIN SO
Madame M. LIEGE D.D.A.S.S. Charente
Madame le Docteur S. MALAVAUD C.H.U. Toulouse
Monsieur S. MARIE C.H. Esquirol de Limoges - CCLIN SO
Madame le Professeur N. MARTY C.H.U. Toulouse
Monsieur le Docteur P. PARNEIX C.H.U. Bordeaux - CCLIN SO
Madame C. RENAUT D.D.A.S.S. Gironde
Madame le Docteur I. SECHER C.H. Angoulême
SOMMAIRE

INTRODUCTION

I - ETUDE DU RESEAU D’EAU

A – Etat des lieux

1 – Description générale de l’établissement et des différents locaux

2 – Description des installations et des équipements raccordés

2-1 – Origine de l’eau

2-2 – Qualité de l’eau à l’entrée de l’établissement

3 – Plan et schéma des réseaux

3-1 – Stockage

3-2 – Répartition par usage

3-2-1 – Eaux alimentaires

3-2-2 – Eaux à usage médical

3-2-3 – Eaux techniques

3-2-4 – Eau de réseau d’incendie

3-2-5 – Eaux industrielles

3-2-6 – Eaux usées

3-3 – Identification et descriptif des réseaux

4 – Conditions d’exploitation

B – Identifier les points critiques

1 – Défauts de conception et de réalisation

2 – Défauts d’exploitation, d’entretien et de maintenance

3 – Evaluation de la contamination du réseau d’eau chaude sanitaire

C – Mesures correctives

D – Mise à jour du plan et du carnet sanitaire

II – CONDUITE A TENIR FACE A UN RISQUE DE LEGIONELLOSE

A – Conduite à tenir face à un prélèvement d’eau positif

B – Conduite à tenir face à un cas clinique de légionellose

III – RECOMMANDATIONS CONCERNANT L’OXYGENOTHERAPIE ET L’AEROSOLThERAPIE

A – Oxygénothérapie

1 – Principe

2 – Technique

2-1 – Humidificateurs pré-remplis d’eau stérile à usage unique

2-2 – Réservoirs type barboteurs
B – Aérosolthérapie .. 18
 1 – Matériel .. 19
 2 – Technique .. 19
 3 – Entretien quotidien du kit .. 19
 4 – Entre deux séances ... 20
 5 – A la fin du traitement et/ou à la sortie du patient .. 20

IV – REGLES D’HYGIENE APPLICABLES AUX INSTALLATIONS INTERIEURES DE DISTRIBUTION D’EAU DESTINEE A LA CONSOMMATION HUMAINE 21-25

A – Conception et réalisation des réseaux .. 21
 1 – Matériaux ... 21
 2 – Réseaux ... 22
 3 – Réservoirs .. 23
 4 – Protection contre les retours d’eau .. 23
 5 – Traitement de l’eau .. 24
B – Entretien et vérification... 24

V – BONNES PRATIQUES D’ENTRETIEN DES INSTALLATIONS A RISQUE 26-41

A – Production d’eau chaude sanitaire ... 26
 1 – Ballon d’eau chaude .. 26
 2 – Réseau de distribution d’eau chaude sanitaire .. 29
 3 – Contrôle de la qualité ... 30
B – Tours aéro-réfrigérantes .. 31
C – Systèmes de climatisation à batterie et humidificateurs 33
D – Bains à remous ou à jets ... 35
E – Désinfection des réseaux d’eau chaude sanitaire .. 35
 1 – Réglementation .. 35
 1-1 – Produits de désinfection ou d’oxydo-réduction 36
 1-2 – Procédé de désinfection et oxydation ... 37
 2 – Mise en œuvre de la désinfection .. 38
 2-1 – Choc thermique .. 38
 2-2 – Choc chimique .. 40
 2-3 – Contrôle de l’efficacité du traitement .. 41

BIBLIOGRAPHIE 42-43

ANNEXES 44-50
ANNEXE 1 : Fiche COSTIC – NSF 40-201
ANNEXE 2 : Fiche COSTIC – NSF 31-301
INTRODUCTION

La consommation d'eau dans les établissements de santé est particulièrement importante puisqu'elle varie en fonction de la taille de l'établissement de 200 à 1000 litres par lit et par jour. Les usages de l'eau y sont variés qu'ils soient alimentaires, techniques, sanitaires ou médicaux. Pour chaque usage il convient de disposer d'une eau répondant à des critères physico-chimiques et microbiologiques précis. C'est alors que se pose la question de la qualité de l'eau mise à la disposition des usagers des établissements de santé. En effet, il existe un grand nombre de textes réglementaires divers qui permettent aux responsables de ces structures de mettre en œuvre dans le cadre de la loi des dispositions techniques permettant de garantir en première intention une certaine qualité de l'eau. S'il ne s'agit pas là d'une réelle démarche de mise en œuvre d'une assurance de la qualité, la connaissance et le respect de ces textes doivent permettre l'acquisition d'un niveau minimal de sécurité dans la prise en charge de la gestion de l'eau dans les établissements de santé. L'évolution du dispositif législatif tend actuellement vers une sécurité toujours accrue pour l'utilisateur et le domaine de l'eau est au cœur de cette préoccupation de sécurité sanitaire.

Le cas de la gestion du risque de légionellose en est une bonne illustration. Cette pathologie est toutefois spécifique en raison des nombreuses zones d'ombres qui sont encore associées à cette infection qui peut être nosocomiale. On peut citer, par exemple, les éléments suivants :

- connaissance imparfaite de l'incidence réelle des cas nosocomiaux,
- connaissance imparfaite du lien entre le niveau d'exposition et la survenue d'une infection (problème du seuil),
- difficultés techniques, lourdeur et prix des analyses,
- différences possibles de virulence et/ou de pathogénicité entre les différentes souches,
- difficultés pour établir un lien entre les souches (éventuellement) isolées chez les malades et celles isolées dans l'environnement (le diagnostic chez les patients est très souvent sérologique),
- difficultés des enquêtes environnementales, en particulier dans les cas communautaires isolés, et ce d'autant plus que les délais de déclaration (lorsque déclaration il y en a) sont longs,
- interactions légionelles libres/ légionelles intra-cellulaires, en particulier, amibes et difficultés (voire impossibilité) d'éradication dans un réseau, rôle du biofilm,
- mécanismes d'action des produits préconisés en désinfection, non seulement sur les légionelles mais aussi sur ses hôtes,
- état des réseaux d'eau, financement des remises en état des réseaux vétustes, financement et modalités d'une maintenance préventive.

Par ailleurs la situation écologique des établissements de santé vis à vis des Legionella n'était pas forcément prévisible au vu de la rareté des cas nosocomiaux décrits. Dans une enquête récente publiée par la DRASS d'Aquitaine 34 % des analyses d'eau effectuées dans les établissements de santé évalués étaient positives avec pour plus de 60 % d'entre elles une concentration supérieure à 10^3 UFC/l. Par ailleurs 52 % de ces établissements ont trouvé au moins un de leurs prélèvements positifs au seuil de détection pour les légionelles.

Il n’en demeure pas moins que la réglementation concernant la légionellose, malgré ses difficultés d’application, constitue une opportunité à saisir pour engager une démarche qualité en matière de gestion des risques liés à l’eau du réseau. En effet, s’occuper des légionelles, revient plus largement à s’occuper de la qualité du réseau d’eau et des autres germes potentiellement contaminants (Pseudomonas en particulier).

La conception initiale de celui-ci et en particulier l’absence de bras morts est un gage de maintien de la qualité de l’eau. Le choix des matériaux, la lutte contre la corrosion, la mise en place de dispositifs anti-retour (disconnecteur, clapet …) sont des obligations techniques pour assurer une bonne longévité au réseau.
Le détartrage, voire la désinfection de certaines parties de celui-ci pour éliminer des biofilms sont à l'origine de manœuvres souvent difficiles. Dans ce cas, la qualité dépend des choix initiaux, de la qualité des matériaux mais aussi d'un équilibre acido-basique et minéral de l'eau qui évite que celle-ci n'agresse ou n'entartre pas trop rapidement les conduites. Pour le réseau, la qualité procède avant tout de choix et de mesures techniques adaptées.

Dans ce document le CCLIN SO a voulu inciter les établissements à poursuivre et à structurer leur démarche de gestion des risques liés à l'eau en mettant en exergue les actions déjà réalisées dans l'inter-région et en s'appuyant dans le domaine technique sur les ressources très utiles, mais parfois méconnues, que constituent les services d'ingénierie sanitaire des DDASS et des DRASS de l'inter-région.
I - ETUDE DU RESEAU D’EAU

L'étude de ce réseau ne se conçoit pas de façon dissociée de l'ensemble des réseaux hydriques de l'établissement.

A - Etat des lieux

1 - Description générale de l’établissement et des différents locaux

- description générale de l’établissement et son historique
- répartition géographique des locaux
- définition d’usage des locaux :
 - unités,
 - repérage des secteurs,
 - sous-secteurs sensibles (unités de soins avec patients à risque).

2 - Description des installations et des équipements raccordés

2-1 - Origine de l’eau

- réseau d’eau public (alimenté par eau d’origine souterraine ou superficielle),
- ou ressource privée (référence de l’arrêté d’autorisation),
- ou les deux origines (mélange, utilisation spécifique ….).

2-2 - Qualité de l’eau à l’entrée de l’établissement

Objectif : choisir le type des matériaux et estimer le besoin d’un traitement spécifique de l’eau avant sa distribution dans l’établissement

Analyse fournie par la DDASS (laboratoire des eaux) et/ou le gestionnaire du réseau :

- une analyse bactériologique
- une analyse physico-chimique (comprenant au moins les paramètres suivants)
 - dureté
 - pH
 - température
 - conductivité
 - bilan ionique
- équilibre calco-carbonique
- matières en suspension (MES)
- matières organiques dont le Carbone Organique Dissous Biodégradable (CODB)

3 - Plan et schéma des réseaux

3-1 - Stockage : nombre, emplacement et volume des bâches afin d'apprécier la durée de stagnation de l'eau

3-2 - Répartition par usage :

3-2-1 - eaux alimentaires (boissons, préparation des repas...) et sanitaires (toilettes) :
- eau du réseau d'adduction
- eau des fontaines réfrigérées
- eau pour la production de glace
- eau du restaurant
- préciser la mise à disposition de l'eau de boissons (carafes …)
- eau chaude sanitaire (ECS)

3-2-2 - eaux à usage médical
- eau de dialyse
- eau purifiée
- eau pour préparation injectable
- eau bactériologiquement maîtrisée
- eau propre
- eau ultra-propre

3-2-3 - eaux techniques
- circuits de climatisation
- eau d’arrosage
- eau de piscine de rééducation
- eau de condensation des tours aéroréfrigérée

3-2-4 - eau de réseau d’incendie
3-2-5 - eaux industrielles
 - eau de la blanchisserie

3-2-6 - eaux usées

Ces eaux seront référencées par catégorie sur le plan de masse fourni par l’établissement ou sur tout schéma réalisé.

3-3 - Identification et descriptif des réseaux
 - tracés et diamètres des canalisations, emplacement des compteurs
 - nature des matériaux et dimensionnement (longueur et diamètre)
 - appareils de traitement et de production (ballons ECS, filmogènes, adoucisseurs, échangeurs……)
 - relevé des caractéristiques de fonctionnement du réseau (appareils de mesure: température, pression…)
 - organes hydrauliques (pompes, surpresseurs, vannes…)
 - organes de sécurité (dispositifs anti-retour, robinets de purge, interconnections…)
 - équipements raccordés et points d’usage

4 - Conditions d’exploitation
 - recensement des procédures d’entretien et des procédures de vérification
 - qualification des opérateurs
 - existence d’un carnet sanitaire
 - historique des travaux et problèmes rencontrés
 - planning des analyses
 - planning des entretiens

B - Identifier les points critiques
Anomalies et dysfonctionnements pouvant contribuer au développement des légionelles au niveau des réseaux à risque.

1 - Défauts de conception et de réalisation
 - zones stagnantes, bras morts, zones de dépôt
 - absence d’organes de purge et de chasse
- absence de pots de décantation en partie basse et de dégazeurs en partie haute de la distribution
- absence d'éléments de disconnection adaptés (alimentation générale, production d'eau chaude, points de puisage techniques, douche…)
- difficultés à maintenir des températures élevées
- retour d'eau froide sur le réseau d'eau chaude et inversement
- passage de canalisations en milieu surchauffé ou pollué
- alternance de matériaux (risque de corrosion)
- choix inadaptés de matériaux (en fonction du type et de la qualité de l'eau transportée)

2 - Défauts d'exploitation, d'entretien et de maintenance:

- tout particulièrement des organes hydrauliques et organes de sécurité
- défaut d'entretien des locaux techniques
- défaut au niveau des traitements complémentaires (réseaux entartrés, corrodés)
- autres problèmes :
 * non utilisation des points de distribution (douche..)
 * canalisation obstruée,
 * cordons chauffants défectueux,
 * absence de nettoyage des appareils sanitaires (robinetterie…).

3 - Evaluation de la contamination du réseau d'eau chaude sanitaire

- analyses au niveau des ballons de production et de stockage
- analyses au niveau du réseau: points les plus éloignés de la production, retours de boucles…

C - Mesures correctives

Le mesures correctives seront mises en œuvre en tenant compte de plusieurs critères :
 - efficacité et mise en sécurité du réseau,
- contraintes d'exploitation et faisabilité (délai de mise en œuvre, coût, particularités techniques du réseau).

Ces mesures peuvent être les suivantes :
- modifications techniques (suppression des bras morts, restructuration des réseaux)
 - disconnection des différents réseaux (ECS, incendie, eau froide)
 - équilibrage des réseaux (débit)
 - mise en conformité
 - traitements, nettoyage, désinfection
 - protocole de surveillance
 - protocole d'entretien
 - information et formation des personnels concernés par ces mesures
 - protocole de mise en service après travaux programmés ou d'urgence (réception sanitaire, analyses).

D - Mise à jour du plan et du carnet sanitaire

- traçabilité des travaux effectués, des opérations d'entretien et des résultats obtenus (chimiques, microbiologiques)
 - suivi et évaluation périodique des actions entreprises
Les zones de prolifération possible des légionelles

(d'après Frédérique Simon - mémoire d'étude ENSP)
II - CONDUITE A TENIR FACE A UN RISQUE DE LEGIONELLOSE

En préambule il faut souligner que la mise en œuvre d'une conduite à tenir cohérente face à la présence de légionelles dans le réseau d'eau sera beaucoup plus aisé si la démarche de fond sur la qualité du réseau a été réalisée.

Certains points doivent être vérifiés de façon systématique même en l'absence de prélèvement d'eau positif. Il convient de rappeler auprès de l'ensemble des responsables des services de soins les bonnes règles d'utilisation de l'eau à usage médical avec en particulier la nécessité d'une eau stérile pour toute nébulisation ou autre humidification des voies respiratoires (cf. exemples de protocoles en annexe). Il est nécessaire de vérifier l'application de ces bonnes pratiques et leur connaissance par l'ensemble des équipes.

A - Conduite à tenir face à un prélèvement d'eau positif*

Parmi les préalables à la démarche de prévention il faut souligner la nécessaire responsabilisation des directions d'établissement dans la gestion de ce problème. Il faut de plus écrire une ou plusieurs procédures et se donner les moyens de pouvoir les appliquer si la nécessité se fait jour. Cela passe en particulier par la mise en œuvre d'une collaboration efficace entre le CLIN, l'équipe opérationnelle en hygiène (EOH) et les services techniques et cela nécessite l'identification des personnes concernées par l'organigramme décisionnel.

* Sur le plan microbiologique le caractère positif d'un prélèvement correspond actuellement à la présence d'au moins 50 UFC par litre. Lorsqu'un prélèvement est positif la conduite à tenir sera déclinée en fonction de la concentration retrouvée et des seuils d'alerte et/ou d'intervention retenus.
Le seuil d'alerte habituel est une densité supérieure à 10^3 UFC par litre
Mesure initiales à prendre systématiquement en cas d'alerte

Sensibilisation des médecins au risque potentiel de survenue de cas et incitation à la vigilance diagnostique (envoi du résultat commenté au chef de service)
Vérification de la température de l'eau à la production et à la distribution (65°C à la production et pas moins de 50°C à la distribution)
Entretien des périphériques : vérifier leur degré d'entartrage (détartrage et désinfection si nécessaire) ou les changer au niveau du point positif. Pour les flexibles il faut vérifier l'état physique et les changer si nécessaire (noter le changement sur le carnet sanitaire). Remplacer les brise-jet à grille par des brise-jet à étoile.

Contrôle microbiologique immédiat pour vérifier l'efficacité des mesures.

<table>
<thead>
<tr>
<th>Si service à risque (hématologie, greffe, cancérologie) ou présence de patients à risque dans le service</th>
<th>Si absence de patients à risque dans le service contrôlé</th>
</tr>
</thead>
</table>
| * points de distribution d'eau chaude :
 - éviction des douches (purge régulière si douche commune, dans les chambres occupées les purges ne doivent pas exposer les patients à des aérosols contaminants),
 - limitation de l'usage des lavabos à la seule eau froide ou ECS filtrée,
 Maintien des mesures jusqu'à négativation des contrôles microbiologiques | * pas d'éviction, |
| * envisager le traitement curatif adapté (type choc chloré ou thermique). Quelle que soit la solution retenue il faut obtenir la négativation du prélèvement. La réalisation d'un choc sur un réseau capable de le supporter est la meilleure solution en raison de sa rapidité de mise en œuvre. | * l'objectif est aussi la négativation des prélèvements mais il n'y a pas ici de contrainte de fonctionnement et d'impératif de temps (il convient d'initier à cette occasion si ce n'est déjà fait une réflexion globale sur la démarche de prévention). |
Ces mesures sont proposées pour le seuil de 10^3 UFC/l qui est le seuil évoqué dans les circulaires officielles mais il n'existe pas assez de données épidémiologiques validées pour permettre de définir un seuil d'intervention sur des bases purement scientifiques. Il est admis par contre que le risque est proportionnel à la concentration et le choix d'un seuil plus élevé, ou plus faible selon les circonstances, pour mettre en œuvre des mesures préventives complémentaires de seconde intention appartient localement au CLIN ou au comité de gestion des risques lorsqu'il existe. Des textes complémentaires basés sur le modèle décisionnel des tour-aéroréfrigérées viendront probablement conforter ces conduites à tenir dans le futur. Dans les établissements thermaux par exemple le seuil d'intervention a été fixé au seuil de détection par la [Circulaire DGS/VS 4 N° 2000-336 du 19 juin 2000](#) relative à la gestion du risque microbien lié à l'eau minérale dans les établissements thermaux.

B - Conduite à tenir face à un cas clinique de légionellose nosocomiale

Cette démarche est codifiée de façon précise dans la circulaire DGS n°97/311 du 24 avril 1997 relative à la surveillance et à la prévention de la légionellose. En complément certains éléments peuvent être précisés :

Il convient de penser au suivi des personnes exposées au risque (lettre au médecin traitant ou contact avec les autres services) et d'envisager s'il y a lieu la mise en place d'une chimio prophylaxie chez les sujets à risque en cas d'épidémie.

Il faut condamner les points d'eau chaude (services à risque ou patients à risque) avec en priorité les douches. L'eau chaude issue du robinet peut être éventuellement utilisée pour la toilette des patients à condition d'être soutirée hors de la présence des patients.

Aucun isolement septique n'est nécessaire.

Il convient de réaliser au plus vite un choc au niveau du ballon et de tout le réseau de distribution concerné en vérifiant que chaque point d'eau a été concerné par le choc. Il faut effectuer des contrôles avant et après (24 à 72 heures) le choc et maintenir les mesures jusqu'au passage en dessous du seuil d'alerte fixé.

Une réflexion concertée du CLIN avec le laboratoire de microbiologie doit permettre la mise en place d'une politique incitative adaptée de recherche diagnostique des cas de légionellose.
III - RECOMMANDATIONS CONCERNANT L'OXYGENOTHERAPIE ET L’AEROSOLTHERAPIE

L'ensemble de ces recommandations a pour objectif de prévenir le risque d'infection par inhalation de micro-organismes se multipliant dans les milieux humides (Legionella, Pseudomonas, etc…).

A - Oxygénothérapie

L'oxygénothérapie consiste à une administration thérapeutique d'oxygène par sonde, lunettes ou masque facial.

1 - Principe

Il est actuellement admis, pour la plupart des patients, de réaliser une humidification à partir d'un débit > 3 l/mn.

L’humidification peut se faire par l'intermédiaire :

⇒ d’humidificateurs jetables, pré-remplis d’eau stérile : « Système clos » qui apportent une meilleure qualité et sécurité. Cette technique est à privilégier.

⇒ de réservoirs réutilisables, type barboteurs :
Ils comportent un risque réel de contamination de l'eau.
Ils nécessitent des procédures d’utilisation et d’entretien très rigoureuses.
Il est à noter que ce matériel réutilisable génère une charge de travail importante et peut être une source d’erreur non négligeable.

2 - Technique

2-1 - Humidificateurs pré-remplis d’eau stérile à usage unique :

Vérifier l’intégrité de l’emballage et la date de péremption
Connecter de manière aseptique tous les branchements (sonde, lunettes, masque) au manomètre. Noter sur l’étiquette du flacon la date d’ouverture.
Entretien :
♦ Changer la sonde à oxygène, les lunettes, le masque, et la tubulure impérativement toutes les 24 heures
♦ L’humidificateur doit être changé dès que le niveau d’eau minimal est atteint
♦ L’humidificateur peut rester en place plusieurs jours (suivre les indications du fabricant)
♦ Dès que le dispositif n’est plus utilisé, il doit être jeté.

2-2 - Réservoirs type barboteurs :

Vérifier l’intégrité de l’emballage si le matériel a été stérilisé
S’assurer que le barboteur a subi une procédure de nettoyage-désinfection (cf entretien ci-dessous)
Remplir d’eau stérile jusqu’à la limite maximum
Ne jamais compléter le niveau d’eau en cours d’utilisation mais jeter le liquide restant et procéder à un nouveau remplissage

Entretien :
♦ Changer la sonde à oxygène, les lunettes, le masque, et la tubulure impérativement toutes les 24 heures
♦ Les réservoirs ou barboteurs sont nettoyés, désinfectés, rincés suivant les bonnes pratiques avec une eau de qualité maîtrisée et séchés tous les jours. Il s’agit de matériel semi-critique nécessitant une désinfection de niveau intermédiaire.
♦ Si le matériel le permet, les barboteurs seront stérilisés.

B - Aérosolthérapie

Objectif :
Prévenir le risque d’infection par inhalation de micro-organismes se multipliant dans les milieux humides (Legionella, Pseudomonas etc…)
L’aérosol consiste à une administration de produits médicalementes inhalés grâce à de fines particules liquidienes maintenues en suspension dans un gaz véhiculé par de l’air ou de l’oxygène.
Ce soin s’effectue selon la prescription médicale.

1 - Matériel :

Kit à usage unique (nébuliseur, tubulure, masque)
Débimètre à air ou oxygène
Eau stérile ou sérum physiologique (préférer conditionnement monodose)
Produits médicamenteux

2 - Technique :

Installer le patient : position demi-assise si possible
Brancher le débimètre sur la source d’air ou d’oxygène
Préparer la solution médicamenteuse au moment même de l’aérosol
Adapter le masque
Relier la tubulure du nébulisateur au manomètre
Régler le débit selon la prescription médicale
Vérifier la présence de micro-brouillard
Placer le masque sur la bouche et le nez
Respecter la durée de l’aérosolthérapie selon la prescription médicale

3 - Entretien quotidien du kit :

♦ Changer le kit toutes les 24 heures (nébuliseur, tubulure, masque aérosol)
♦ Nettoyer-désinfecter le manomètre avec un papier à usage unique imprégné de détergent-désinfectant
4 - Entre deux séances :

♦ A la fin de l’aérosol, **vider le nébuliseur**
♦ **Le rincer avec de l’eau stérile** (conditionnement monodose de préférence) si dépôt médicamenteux
♦ Mettre le kit dans un emballage protecteur (ex : poche à prélèvements, poche du kit etc…)
♦ Laisser le matériel dans la chambre du patient

5 - A la fin du traitement et/ou à la sortie du patient

♦ Eliminer l’ensemble du kit

Traçabilité

Noter dans le dossier du patient le soin ainsi que la date, l’heure, le nom et la signature de l’opérateur

Cadre référentiel

- Traitement du matériel de ventilation en anesthésie et réanimation. CCLIN Sud-Ouest 1996
- Guide des bonnes pratiques d’hygiène en anesthésie et réanimation. CCLIN Sud-Est 1997 (2ème édition)
- Circulaire DGS n° 98-771 du 31 décembre 1998 relative aux moyens de prévention du risque lié aux légionelles
- 100 Recommandations pour la surveillance et la prévention des infections nosocomiales. 1999
IV - REGLES DE BONNES PRATIQUES DE CONCEPTION DES RESEAUX APPLICABLES AUX INSTALLATIONS INTERIEURES DE DISTRIBUTION D'EAU

Au cours de son cheminement dans le réseau intérieur, l'eau peut s'altérer et subir des contaminations microbiologiques ou chimiques. Les principaux risques d'altération de la qualité de l'eau peuvent être provoqués par des pollutions extérieures engendrées par des retours d'eau, par des phénomènes de corrosion ou de perméation liés à la nature des matériaux ou par des défauts de conception ou d'entretien des réseaux intérieurs.

Afin de limiter les risques d'altération de l'eau il est indispensable de respecter les règles d'hygiène au niveau de la conception, la réalisation et l'entretien des réseaux d'eaux.

A - Conception et réalisation des réseaux

1 - Matériaux

Les matériaux des canalisations, des réservoirs et équipements à usage alimentaire et sanitaire ne doivent pas dégrader la qualité de l'eau et être compatibles avec les caractéristiques de l'eau. En particulier, il est nécessaire :

- d'identifier et de supprimer les canalisations en Plomb

- de ne pas installer de canalisation en cuivre en amont de canalisation ou appareillage en acier galvanisé

- de ne pas utiliser de matériaux polymériques (Polychlorure de Vinyle ou Polyéthylène) dans un lieu où sont stockés des produits de nature organique (solvants par exemple…).
2 - Réseaux

⇒ **Dimensionnement** : les réseaux de canalisation des distributions d'eau doivent être dimensionnés pour favoriser une circulation de l'eau en éliminant les zones stagnantes et les bras morts. Ils doivent être aussi simples et aussi courts que possible. Les réseaux doivent être répartis en fonction des usages de l'eau en séparant le réseau pour usages alimentaires et sanitaires des réseaux techniques (chauffage, climatisation, arrosage…) et des réseaux professionnels (réseau industriel, réseau incendie…).

⇒ **Séparation des réseaux** : cette séparation des réseaux préservera la qualité de l'eau du réseau alimentaire et sanitaire, car elle évitera des zones stagnantes voire de circulation nulle et surtout des temps de séjour important de l'eau qui favorisent la corrosion et la formation de dépôts.

Tous ces réseaux devront être conçus pour être nettoyés, rincés, désinfectés et vidangés en particulier avant leur mise en service et après toute intervention sur le réseau.

⇒ Toute communication entre le réseau d'eau potable et le réseau d'une ressource non potable, s'il existe, est strictement interdite.

⇒ **Signalisation des réseaux** : les réseaux de canalisations et les différents points de puisage doivent pouvoir être identifiés au moyen de signes distinctifs.

⇒ **Mise à la terre** : l'utilisation des canalisations intérieures d'eau pour la mise à la terre des appareils électriques est interdite, celle-ci peut favoriser des phénomènes de corrosion pour les installations anciennes. Lorsqu'il n'existe pas de dispositif de mise à la terre, cette interdiction peut être levée à titre dérogatoire pour les installations antérieures au 5 avril 1995 sous certaines conditions techniques qui préserveront surtout la sécurité des usagers et des personnels d'exploitation des installations.
3 - Réservoirs

Les réservoirs de stockage doivent être dimensionnés pour éviter la stagnation de l'eau.

Les réservoirs de mise sous pression, les réservoirs de stockage y compris ceux contenant des eaux chaudes sanitaires, les surpresseurs et les ballons de surpression, les dispositifs anti-béliers doivent être conçus de telle sorte qu'ils soient à l'abri de toute contamination extérieure et comporter au minimum, une canalisation de vidange située au point le plus bas du fond du réservoir.

4 - Protection contre les retours d'eau

⇒ **Réseau et équipement** : la protection des installations intérieures de distribution d'eau contre les retours de fluide en provenance des réseaux et des équipements raccordés doit être assurée par une protection adaptée à chaque réseau ou à chaque équipement (poste utilisateur d'eau). Par exemple pour une chaudière de plus de 70 kW le dispositif sera un disconnecteur de type BA et pour l'alimentation d'un ballon d'eau chaude il s'agira d'un clapet EA.

Les dispositifs de protection anti retour (bâche de rupture, disconnecteurs, clapets…) doivent donc être installés au niveau des réseaux et des équipements à risque. Penser aux clapets anti-retour sur les mitigeurs pour éviter les mélanges eau chaude-eau froide.

⇒ **Évacuations** : toute évacuation raccordée au réseau intérieur et notamment les réservoirs, tout dispositif de traitement ou toute canalisation de rejet les desservant doivent comporter avant déversement, une rupture de charge par mise à l'air libre.
5 - Traitement de l'eau

Le traitement complémentaire ne doit concerner qu'une partie des eaux livrées de telle sorte que le consommateur final puisse disposer d'une eau froide non soumise à ce traitement.

⇒ les produits et supports de traitement doivent être autorisés par le Ministère de la Santé.
⇒ les installations de traitement et les dispositifs de traitement complémentaire de l'eau ainsi que les produits de traitement auxquels il est fait appel doivent être placés à l'abri des sources éventuelles de contamination (local spécifique).

B - Entretien et Vérification

Les opérations d'entretien et de vérification réalisées sur un réseau interne de distribution permettent de maintenir en bon état de fonctionnement l'ensemble des installations et évitent une dégradation de la qualité de l'eau sanitaire.

Un entretien et une vérification doivent être réalisés aussi souvent que nécessaire et au moins une fois par an sur les réservoirs et bâches de stockage, et au moins tous les six mois sur les dispositifs de traitement et de protection. Ces opérations comprendront nécessairement :

- l'examen des conditions d'hygiène,

- le nettoyage et le réglage des organes hydrauliques, électriques ou électroniques,

- l'évaluation et l'efficacité du traitement et des organes de sécurité,

- le diagnostic des travaux à réaliser.

Toutes ces opérations seront effectuées par des personnes spécialement formées et seront consignées dans un carnet sanitaire.
Si des modifications sont apportées sur le réseau de distribution d'eau, elles devront être reportées sur le plan de réseau. Celui-ci est indispensable pour localiser tout désordre, pour rechercher l'origine éventuelle d'une contamination, pour réaliser des travaux et organiser l'entretien.

Bibliographie :

- L'eau dans les établissements de santé – DRASS Rhône-Alpes
- Travaux de Mr. MONTOUT – service des recherches et d'ingénierie en protection sanitaire – Paris

Référence réglementaire :

- Décret du 3 janvier 1989 modifié relatif aux eaux destinées à la consommation humaines et notamment la section V (articles 26 à 35) concernant les règles d'hygiène applicables aux installations de distributions d'eau.
- Arrêté du 29 mai 1997 définissant les conditions auxquelles doivent répondre les matériaux et objets utilisés dans les installations fixes de production de traitement et de distribution des eaux destinées à la consommation humaine.
- Guide technique antipol n°1 relatif à la protection sanitaire des réseaux de distribution d'eau destinée à la consommation humaine.
- Guide technique n° 1 bis relatif à la qualité des installations de distribution d'eau destinée à la consommation humaine à l'intérieur des bâtiments.
- Des arrêtés sont en cours de préparation pour fixer certaines obligations dans ce domaine.
V - BONNES PRATIQUE D'ENTRETIEN DES INSTALLATIONS À RISQUE

A - Production d'eau chaude sanitaire

Les réseaux d'eau chaude sanitaire sont des lieux propices à la prolifération des bactéries *Legionella*, celles-ci se développant à des températures comprises entre 25 et 45°C. Le risque se situe essentiellement au niveau des douches qui génèrent des aérosols pouvant être inhalés par les usagers.

☛ Prévoir si nécessaire des traitements adaptés anti tartre et anti corrosion

☛ Maintenir et entretenir les installations de traitement

1 - Ballon d'eau chaude

☛ Placer et maintenir le local à l'abri des sources éventuelles de contamination

☛ Vérifier l'installation des clapets anti retour sur l'alimentation du ballon et retour boucle

☛ Vérifier que le ballon possède une purge haute et une chasse basse

☛ Vérifier que le système d'évacuation des eaux est en rupture de charge avec l'égout (par mise à l'air libre) et que le local peut évacuer rapidement ses eaux (voire schéma)

☛ Vérifier régulièrement les températures au départ et au retour de la boucle d'eau chaude. Maintenir de préférence une température de 60°C à 65°C au sein du ballon
- Vérifier que les additifs introduits dans les installations de traitement thermique, fonctionnant en simple échange, appartiennent à la liste des produits autorisés (circulaires du 2 juillet 1985 et du 2 mars 1987 relatives au traitement thermique des eaux destinées à la consommation humaine) et que le dispositif permettant de contrôler l'existence d'une fuite éventuelle est en état de fonctionnement.

- S'assurer de la qualité alimentaire du revêtement interne des ballons et des canalisations

- Procéder à un entretien régulier :

 - une fois par mois minimum :

 - faire une chasse au point bas des ballons et des pots à boues (la chasse doit être le plus près du bas du ballon sans rétrécissement et sans coude)

 S'il existe un traitement par anode aluminium faire une chasse une fois par semaine.

 - une fois par an :

 - vérifier le bon fonctionnement des thermomètres, des purgeurs et des clapets anti-retour,

 - vidanger, nettoyer, détartrer, désinfecter, rincer et observer l'intérieur (voir fiche désinfection).

- Vérifier le traitement par anode en aluminium :

 - une fois par an :

 - vérifier l'état des anodes sacrificielles
Schéma : Règles des ruptures de charge avant déversement

Rupture de charge sur entonnoir

Rupture de charge au sol

Rupture de charge sur caniveau

Règlement sanitaire
2 - Réseau de distribution d'eau chaude sanitaire

- Limiter la température maximale de l'eau chaude sanitaire aux points de puisage à 50°C pour éviter les risques de brûlures.

- Si possible mitiger au plus près des points de distribution

- Vérifier qu'aucune canalisation en cuivre n'est placée en amont de canalisation ou appareillage en acier galvanisé pour éviter les phénomènes de corrosion.

- Effectuer un rinçage et le cas échéant une désinfection après tous travaux sur le réseau

- Supprimer les bras morts et tous dispositifs favorisant la stagnation de l'eau

- Vérifier l'absence de passage d'eau froide sur le réseau d'eau chaude (risque de réchauffement) et vice versa (risque de contamination microbiologique) (surtout au niveau des lavabos à commande automatique)

- Vérifier la bonne circulation dans la boucle d'eau chaude

- Procéder à un entretien régulier :

 - s'assurer du bon fonctionnement des limitateurs de température
 - vérifier l'état de fonctionnement des pompes de recirculation en cas de bouclage de l'eau chaude,
 - purger, désinfecter et rincer les canalisations une fois par an au minimum (voir fiche désinfection),
 - détartrar tous les éléments périphériques de la distribution, joints, filtres de robinet, filtres de douche, flexibles de douche, au minimum une fois par an et les remplacer si nécessaire : détartrer dans une solution à pH acide telle que acide sulfamique, vinaigre blanc.....). La mise en place d'une stratégie de renouvellement régulier et fréquent de ces dispositifs dans le cadre d'une action planifiée paraît à encourager.
Procéder à des chasses aux extrémités des réseaux, sur tous points bas, toute zone et tous points d'usage à faible utilisation

Observer les tubes témoins pour évaluer le niveau d'entartrage ou de corrosion

Fonctionnement saisonnier et (ou) irrégulier de l'établissement

- un soutirage d'eau est nécessaire lorsque les chambres ou lieux restent inoccupés pendant plusieurs jours et tout particulièrement avant la mise à disposition à un nouvel occupant,

- dans les établissements à fonctionnement saisonnier, il doit être procédé, avant la réouverture, à un nettoyage complet des réservoirs et des éléments de robinetterie suivi d'un écoulement prolongé à tous les points d'usage.

3 - Contrôle de la qualité

Vérifier la qualité de l'eau par des recherches de Légionelles une fois par an conformément à la circulaire.

Noter toutes les opérations d'entretien et de vérification sur un carnet sanitaire d'exploitation (date, nature, coordonnée de l'opérant)

Mettre à jour le plan de réseau d'eau après toute modification.
B - Tours aéro-réfrigérantes

Les tours constituent un milieu particulièrement favorable au développement de différents microorganismes pathogènes et notamment des légionelles. Ces bactéries sont véhiculées à l'intérieur des micro gouttelettes (panache) qui s'échappent des tours et peuvent être entraînées sur des dizaines voire des centaines de mètres. Dans les établissements de santé ces tours font maintenant le plus souvent partie des installations classées et sont soumises à des directives départementales précises prises par arrêté préfectoral.

Les objectifs sont de :

☛ Réduire la production et l'envol des micro gouttelettes vers l'extérieur et de limiter la prolifération des légionelles à l'intérieur des tours,

☛ Contrôler l'intégrité des dispositifs d'arrêt des gouttelettes et si nécessaire, procéder à leur remplacement,

☛ Vérifier que l'alimentation d'eau neuve et l'apport de produits de traitement se font par surverse ou à l'aide d'un dispositif anti retour (disconnecteur BA),

☛ Vérifier que l'évacuation des eaux de rejet à l'égout se fait en rupture de charge avec l'égout et que le local ou la canalisation peut évacuer rapidement ses eaux,

☛ Veiller à ce que les prises d'air et ventilations des bâtiments se situent au moins à 8 mètres du débouché de la tour et pas sur le vent dominant (le panache des micro gouttelettes ne doit pas être entraîné vers les fenêtres ou les entrées d'air des bâtiments avoisinants)

☛ Eviter la formation de dépôt de tartre et d'oxydes métalliques : adapter les traitements
Nettoyer périodiquement les circuits : faire circuler un dispersant, évacuer les boues au fond des cuves et frotter les surfaces pour éliminer les dépôts (au cours de ce nettoyage, les employés doivent porter des masques adaptés, des lunettes et des gants).

Procéder régulièrement à une désinfection par "choc chloré" (voir fiche désinfection).

Vérifier la qualité de l'eau par des recherches de Légionelles une fois par an.

Noter toutes opérations d'entretien et de vérification sur un carnet sanitaire d'exploitation (date, nature, coordonnée du personnel....).

Mettre à jour le plan de réseau d'eau après toute modification.

Schéma : Tour aéro-réfrigérante
C - Systèmes de climatisation à batterie et humidificateurs

Les systèmes de climatisation à batteries produisent des condensats qui peuvent être à l'origine de prolifération de Légionelles. La circulation de l'air souillé par ces condensats peut contaminer les usagers des locaux. Le même phénomène peut se produire pour les humidificateurs et en particulier sur les humidificateurs à ruissellement et à pulvérisation d'eau sous pression.

☛ Tous les humidificateurs doivent avoir des parois lisses, faciles à nettoyer et inoxydables.

☛ Le système d'humidification doit être placé en amont du système de filtration

☛ Le système d'humidification à vapeur sont les dispositifs les plus surs qu'il faut privilégier si une humidification est nécessaire

☛ Il est conseillé d'installer un filtre de 0,4 µm sur le circuit d'eau d'humidification. Celui-ci devra comporter un dispositif de récupération de l'eau en excès ainsi que des aménagements permettant une inspection côté aval (hublot, porte, éclairage).

☛ Tous les dispositifs de récupération de l'eau doivent comporter une pente de façon à éviter la stagnation. Pour les climatisations à batterie, il s'agit d'un petit bac de condensat.

☛ L'évacuation de l'eau de l'humidificateur et des filtres doit se faire par un système équipé d'un siphon avec une rupture par mise à l'air libre avant déversement au réseau d'égout. S'assurer que l'évacuation est effective.

☛ Il faut veiller à ce que l'implantation des prises d'air neuf soient situées au minimum à 8 mètres de toute source d'air contaminé.
Il est nécessaire de :

- vérifier tous les trois mois le bon écoulement de l'eau et l'absence de dépôts sur les parois,

- nettoyer et désinfecter périodiquement par brossage les équipements avec des produits préconisés dans les consignes d'entretien. Les employés doivent porter une tenue de protection avec port de masque si nécessaire.

En cas d'arrêt de l'humidificateur pendant une période prolongée, il faut vidanger le bac, déposer les médias et maintenir le siphon rempli.

Vérifier la qualité de l'eau par des recherches de Légionelles une fois par an.

Noter toutes les opérations d'entretien et de vérification sur un carnet sanitaire d'exploitation (date, nature, coordonnée du personnel……). Mettre à jour le plan de réseau d'eau après toute modification.

Schéma : Caisson d'humidification par vapeur d'eau
D - Bains à remous ou à jets

Ces installations fonctionnent à des températures optimales de développement des légionelles et facilitent la dispersion d’aérosols. Elles sont donc des sources potentielles de contamination pour l'homme.

L’installation de traitement comprend :

- une filtration avec un taux de recirculation de 30 mn au minimum,

- une désinfection par l’injection d’un produit chloré obligatoirement agréé, après la filtration et non directement dans le bassin (maintenir de préférence un taux de chlore stabilisé entre 2 et 4 mg/l),

- ces traitements doivent être effectués en continu même si le bassin n’est pas utilisé.

Mesurer chaque jour la concentration en désinfectant et le pH de l’eau du bassin.

Le bassin est vidangé en totalité 2 à 3 fois par semaine (voire tous les jours si nécessaire) et, en tout état de cause, au minimum une fois par semaine.

E - Désinfection des Réseaux d'Eau Chaude Sanitaire

1 - Réglementation :

- Code de la Santé publique article L 21

- La circulaire du 7 mai 1990 (J.O. du 28 mai 1990) relative aux produits et procédés de traitement des eaux destinées à la consommation humaine stipule que les produits chimiques doivent être agréés mais aussi qu'ils doivent avoir une certaine pureté.

1-1 - Produits de désinfection par oxydo-réduction

Constituants chimiquement définis mis en œuvre pour la désinfection ou l'oxydo-réduction pouvant entrer dans la composition des préparations commerciales utilisées pour le traitement de l'eau.

La mention de ces constituants dans la liste ci-après ne préjuge pas de leur efficacité, celle-ci étant notamment liée :

- aux conditions d'emploi (dilution, composition de la préparation commerciale, mélange des différents constituants de cette liste,....)
- aux caractéristiques de l'eau.

Il est précisé qu'en cas de mélange de constituants, l'ensemble des constituants de la formulation, quelle que soit la quantité représentée, doit faire partie de la liste ci-après :

- Chlore (NF EN 937)
- Hypochlorite de calcium (EN 900) (NF EN 900)
- Hypochlorite de sodium (PR EN 901) (NF EN 901)
- Chlorite de sodium (NF EN 938)
- Dioxyde de chlore (pr NF EN 12671)
- Dioxyde de soufre (Anhydride sulfureux) (NF EN 1019)
- Bisulfite de sodium (NF EN 12120) ou hydrogénosulfite
- Métasulfite de sodium (NF EN 12121) ou bisulfite de sodium
- Sulfate ferreux (NF EN 889)
- Sulfite de sodium (EN 12124)
- Permanganate de potassium (pr NF EN 12672)
- Ozone (PR EN 1278) (NF EN 1278)
- Oxygène (pr NF EN 12876)
- Péroxyde d'hydrogène (NF EN 902). La circulaire du 20 février 1990 fixe les stabilisants autorisés à ce jour : pyrophosphates de sodium (NF EN 1205; NF EN 1206) et acide phosphorique (NF EN 974)

1-2 - Procédé de désinfection par oxydation

- Ozone
- Chlore et dérivés
- Ultra-Violet à l'aide de lampe à mercure basse pression
- Bioxyde de chlore
- Rétention physique par ultrafiltration membranaire à point de coupure < 40 000 Daltons avec vérification possible de l'intégrité des membranes
- Chloration au point de rupture

Les produits et procédés les plus utilisés pour la désinfection des réseaux d'eau chaude sanitaire intérieures restent :

- le choc thermique
- le chlore sous forme liquide (hypochlorite de calcium et de sodium), solide (ex Surchlor D et GR 62)
- le péroxyde d'hydrogène (ex : Herlisil, HT BIOT 50).
- le dioxyde de chlore

L'utilisation du péroxyde d'hydrogène et du chlore solide doit se faire sur des réseaux hors service, l'eau ne doit pas être consommée.

Les paramètres à prendre en compte pour la mise en œuvre d'un produit désinfectant sont :
- la qualité de l'eau (PH, minéralisation, turbidité, matière organique)
- la nature des matériaux
- l'état du réseau (corrodé, entartré)
- la conception du réseau (boucle, bras morts, zone stagnante).
- le respect du protocole du fabricant du produit (dose – temps)

Avant de choisir un procédé ou un produit de désinfection il est impératif de s'assurer que celui-ci est bien autorisé.

2 - Mise en œuvre de la désinfection

La désinfection sur une installation entartrée ou corrodée ne sera pas ou peu efficace à long termes

2-1 - Choc thermique

↑ Au préalable

- s'assurer que tout le circuit, y compris les organes hydrauliques tels que les joints, peut supporter une température élevée en fonction de la nature des matériaux (ex : attention aux canalisations en acier galvanisé)
- nettoyer, détartrer et désinfecter les réservoirs
- nettoyer et détartrer la robinetterie (la remplacer si nécessaire)
- identifier et neutraliser les mitigeurs durant l'opération pour avoir une température élevée au niveau des robinets
- éliminer les bras morts ou les purger dans la mesure où ils ne peuvent être éliminés
Réalisation du choc thermique

- informer le personnel et les patients d'une élévation de température pour éviter tout risque de brûlure (panneau signalétique)
- s’assurer que l'installation technique est capable d’assumer la production de chaleur pendant l'opération
- élever la température dans les réservoirs pour obtenir 70°C à la sortie des robinets (si cette température ne peut être obtenue ou maintenue, privilégier une autre méthode de désinfection)
- purger tous les robinets et les douches pendant 30 minutes
- mesurer la température à différents points durant toute l'opération
- avant la remise en service du réseau vérifier les températures de distribution

Avantages :

- pas d’équipement spécifique
- opération rapide qui fait baisser la concentration de légionelles

Inconvénients :

- risque de brûlure
- mobilisation de personnel
- l’élévation de la température peut entraîner la détérioration des canalisations et précipiter le carbonate de calcium (entartrage)
- n'évite pas la recolonisation progressive
- difficultés à garder une température élevée dans tous les points du réseau.
2-2 - Choc chimique

✧ Au préalable

- s’assurer que le circuit peut supporter un taux élevé de produit désinfectant en fonction de la nature des matériaux et de l’état du réseau (corrosion)
- nettoyer, détartrer et désinfecter les réservoirs
- nettoyer et détartrer la robinetterie (la remplacer si nécessaire)
- éliminer les bras morts ou les purger abondamment
- disposer d'un plan complet du réseau avec identification de tous les points d'usage !

✧ Réalisation du choc chimique

- installer une pompe doseuse, le point d'injection doit être situé en aval d'un dispositif anti-retour (clapet EA)
- respecter le temps de contact et la dose en fonction du produit utilisé

 Ex : chlore : contact de 24 heures pour 15 mg/l de chlore libre, ou 12 heures pour 50 mg/l. En dehors des techniques de références préconisées dans les circulaires d'autres conditions opératoires sont parfois utilisées comme 150 mg/l pendant 1h30.

 Ex : péroxyde d'hydrogène (HERLISIL et H BIO T 50) temps de contact de 20 à 30 minutes selon le type de produit

 △ Chlore (extrait de javel) :

 1 litre d'eau de javel à 48° chlorométrique correspond à 152 g/l de chlore
 1 litre d'eau de javel à 12° chlorométrique correspond à 38 g/l de chlore.
- s'assurer que le désinfectant atteint tous les points d'usages (robinets et douches)
- rincer abondamment le réseau et tous les points d'usages à la fin du temps de contact
• le réseau peut être remis en service lorsque les taux respectent la réglementation (chlore <0,2 mg/l, H₂O₂ <0,5 mg/l). Le taux de H₂O₂ doit être nul si l'eau du réseau subit une chloration.

2-3 - Contrôle de l'efficacité du traitement

Procéder 24 heures à 72 heures après à des prélèvements pour recherche de légionelles pour évaluer l'efficacité du traitement.

Procéder un mois après à des prélèvements de recherches de légionelles pour apprécier une nouvelle colonisation.
BIBLIOGRAPHIE

- Ministère de l'emploi et de la solidarité. Services Santé-Environnement DDASS de la Gironde. Fiches techniques sur la prévention de la légionellose.

- CCLIN Paris-Nord, DRASS Ile de France. La légionellose... Vous connaissez ? Décembre 1999

- DRASS des Pyrénées Orientales, Attention aux légionelles ! Juin 1999

- Avis du 16 avril 1999 du conseil supérieur d'hygiène publique de France sur la place de l'antibioprophylaxie dans la prévention des légionelloses nosocomiales.

- Ministère de l'emploi et de la solidarité. Circulaire DGS n° 97/311 du 24 avril 1997 relative à la surveillance et à la prévention de la légionellose.

Internet :

Page légionellose du ministère de la solidarité :
http://www.sante.gouv.fr/htm/pointsur/legionellose/index.htm

Page légionellose du CHU de Rouen :
http://www.chu-rouen.fr/ssf/pathol/legionellose.html

Site légionellose de la DRASS d'Ile de France :
http://drass75.sante.gouv.fr/sante/legio.htm